Planta Medica
Journal of Medicinal Plant and Natural Product Research

<table>
<thead>
<tr>
<th>Editor-in-Chief</th>
<th>Advisory Board</th>
<th>Publishers</th>
</tr>
</thead>
</table>
| Luc Pieters, Antwerp, Belgium | Giovanni Appendino, Novara, Italy
John T. Aranson, Ottawa, Canada
Yoshinori Asakawa, Tokushima, Japan
Lars Bohlin, Uppsala, Sweden
Gerhard Brüngmann, Würzburg, Germany
Reto Brun, Basel, Switzerland
Mark S. Butler, S. Lucia, Australia
Ihsan Calis, Ankara, Turkey
Salvador Canigueral, Barcelona, Spain
Hartmut Derendorf, Gainesville, USA
Verena Dirsch, Vienna, Austria
Jürgen Drewe, Basel, Switzerland
Roberto Maffei Facino, Milan, Italy
Alfonso García-Piñeres, Frederick MD, USA
Rolf Gebhardt, Leipzig, Germany
Clarissa Gerhäuser, Heidelberg, Germany
Jürg Gertsch, Zürich, Switzerland
Simon Gibbons, London, UK
De-An Guo, Shanghai, China
Leslie Gunatilaka, Tucson, USA
Solomon Habtemariam, London, UK
Andreas Hensel, Münster, Germany
Werner Herz, Tallahassee, USA
Kurt Hostettmann, Geneva, Switzerland
Peter J. Houghton, London, UK
Jinwoong Kim, Seoul, Korea
Gabriele M. König, Bonn, Germany
Ulrich Matern, Marburg, Germany
Matthias Melzig, Berlin, Germany
Dulcie Mulholland, Guildford, UK
Eduardo Munoz, Cordoba, Spain
Kirsu-Maria Oksman-Caldentey, Espoo, Finland
Ana Maria de Oliveira, São Paulo, Brazil
Nigel B. Perry, Dunedin, New Zealand
Joseph Pfeilschifter, Frankfurt, Germany
Peter Proksch, Düsseldorf, Germany
Thomas Schmidt, Münster, Germany
Volker Schulz, Berlin, Germany
Hans-Uwe Simon, Bern, Switzerland
Leandros Skaltsounis, Athens, Greece
Han-Dong Sun, Kunming, China
Benny K. H. Tan, Singapore, R. of Singapore
Ren Xiang Tan, Nanjing, China
Deniz Tasdemir, London, UK
Nunziatina de Tommasi, Salerno, Italy
Arnold Vlietinck, Antwerp, Belgium
Angelika M. Vollmar, München, Germany
Heikki Vuorela, Helsinki, Finland
Jean-Luc Wolfender, Geneva, Switzerland
De-Quan Yu, Beijing, China | Georg Thieme Verlag KG
Stuttgart · New York
Rüdigerstraße 14
D-70469 Stuttgart
Postfach 30 1120
D-70451 Stuttgart
Thieme Publishers
333 Seventh Avenue
New York, NY 10001, USA
www.thieme.com |

<table>
<thead>
<tr>
<th>Senior Editor</th>
<th></th>
<th>Reprint</th>
</tr>
</thead>
</table>
| Adolf Nahorstedt, Münster, Germany | | © Georg Thieme Verlag KG
Stuttgart · New York
Reprint with the permission of the publishers only |

<table>
<thead>
<tr>
<th>Review Editor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthias Hamburger, Basel, Switzerland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Editors</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Wolfgang Barz, Münster, Germany
Rudolf Bauer, Graz, Austria
Veronika Butterweck, Gainesville FL, USA
João Batista Calixto, Florianopolis, Brazil
Thomas Efferth, Mainz, Germany
Jerzy W. Jaroszewski, Copenhagen, Denmark †
Ikhas Khan, Oxford MS, USA
Wolfgang Kreis, Erlangen, Germany
Irmgard Merfort, Freiburg, Germany
Kurt Schmidt, Graz, Austria
Thomas Simmet, Ulm, Germany
Hermann Stuppner, Innsbruck, Austria
Yang-Chang Wu, Taichung, Taiwan
Yang Ye, Shanghai, China | | |

<table>
<thead>
<tr>
<th>Editorial Offices</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Claudia Schärer, Basel, Switzerland
Tess De Bruyne, Antwerp, Belgium | | |
Kaempferol Regulates the Lipid-Profile in High-Fat Diet-Fed Rats through an Increase in Hepatic PPARα Levels

Chia Ju Chang 1, Thing-Fong Tzeng 1, Shorong-Shii Liou 1, Yuan-Shiun Chang 1, I-Min Liu 3

1 School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
2 Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, Pingtung County, Taiwan
3 Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Yanyi Shiang, Ping Tung Shien, Taiwan

Abstract

The aim of this study was to investigate the anti-obesity and antihyperlipidemic effects of the flavonoid kaempferol (3,5,7,4′-tetrahydroxylavone). After being fed a high-fat diet (HFD) for two weeks, rats were dosed orally with kaempferol (75, 150, or 300 mg/kg) or fenofibrate (100 mg/kg) once daily for eight weeks. Fenofibrate is an antilipemic agent that exerts its therapeutic effects through activation of peroxisome proliferator-activated receptor α (PPARα). Kaempferol (300 mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat, and plasma lipid levels, as well as the coronary artery risk and atherogenic indices of HFD-fed rats. Kaempferol also caused dose-related reductions in hepatic triglyceride and cholesterol content and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes in HFD-fed rats. Kaempferol and fenofibrate reversed the HFD-induced downregulation of hepatic PPARα. HFD-induced reductions in the hepatic levels of acyl-CoA oxidase (ACO), and cytochrome P450 isofrm 4A1 (CYP4A1) proteins were reversed by kaempferol and fenofibrate. The elevated expression of hepatic sterol regulatory element binding proteins (SREBP1) in HFD-fed rats were lowered by kaempferol and fenofibrate. These results suggest that kaempferol reduced the accumulation of visceral fat and improved hyperlipidemia in HFD-fed obese rats by increasing lipid metabolism through the downregulation of SREBP1s and promoting the hepatic expression of ACO and CYP4A1, secondarily to a direct upregulation hepatic PPARα expression.

Abbreviations

RCD: rat chow diet
TC: total cholesterol
TG: triglyceride

Introduction

Obesity is a common chronic disorder of carbohydrate and fat metabolism, characterized by excessive fat deposition in adipose tissue and other internal organs, such as the liver, heart, skeletal muscle, and pancreatic islets [1]. Obesity remains a major global public health issue because of its increasing prevalence, which cuts across issues of sex, age group, ethnicity, or race [1]. Obesity alone can induce all the symptoms of metabolic syndrome which is associated with many additional health problems, including increased risk of insulin resistance, nonalcoholic fatty liver, atherosclerosis, degenerative disorders such as dementia, some immune-mediated disorders such as asthma, and certain cancers [2]. Pharmacological approaches to weight control have become an over-riding priority [3]. Current trends for obesity management involve multiple pharmacological strategies, including blocking nutrient absorption, modulating fat metabolism, regulating adipose signals, and modulating the satiety center. However, these approaches have been associated with several serious adverse effects in the clinic, including adverse gastrointestinal effects and significant unfavorable cardiovascular effects [3]. As a result, a much safer therapeutic approach is necessary.

At present, most of the beneficial health effects of flavonoids are attributed to their ability to scavenge free radicals and chelate metals [4]. Kaempferol (3,5,7,4′-tetrahydroxylavone), quercetin (3,5,7,3′,4′-pentahydroxylavone), and myricetin (3,5,7,3′,4′,5′-hexahydroxylavone) are structurally related members of the flavonol fami...
ily, with four hydroxyl groups in kaempferol, five in quercetin, and six in myricetin. Beneficial effects of quercetin on lipid and lipoprotein profiles and the electrocardiogram have been reported in isoproterenol-treated, cardiototoxic male Wistar rats [5]. Myricetin has also shown to normalize hypertriglyceridemia in diabetic rats [6]. Because of the structural similarity of kaempferol to quercetin and myricetin, it is of special interest to understand whether kaempferol has a positive influence on plasma lipids in a diabetic state.

Diet-induced obesity in rodents has been used as a model to investigate the interactions between the environment and genetics. Rats fed a high-fat diet (HFD) become obese and show distinctive visceral adiposity, dyslipidemia, hyperinsulinemia, and hepatic steatosis, which are typical of human obesity [7]. Therefore, this study investigated the effects of kaempferol on body fat and lipid profiles in rats with diet-induced obesity and sought possible mechanisms of action.

Materials and Methods

Animal models and treatment protocols
Male Wistar rats, 8 weeks of age, were obtained from the National Laboratory Animal Center (Taipei, Taiwan). They were maintained in a temperature-controlled room (25 ± 1 °C) on a 12 h:12 h light-dark cycle (lights on at 06:00 h) in the animal center (Tajen University, Ping Tung Shien, Taiwan). Food and water were available ad libitum. Regular rat chow diet (RCD, #D12450B; Research Diets) with 20 kcal% protein, 70 kcal% carbohydrate, and 10 kcal% fat from lard was used as the maintenance and control diet. A purified ingredient HFD with 20 kcal% protein, 35 kcal% carbohydrate, and 45 kcal% fat primarily from lard (#D12451; Research Diets) was used to induce a rapid increase in body weight (BW) and obesity [8]. The caloric density of the control diet was 3.85 kcal/g; that of the HFD was 4.73 kcal/g. All animal procedures were performed according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, as well as the guidelines of the Animal Welfare Act. These studies were conducted with the approval of the Institutional Animal Care and Use Committee (IACUC) at Tajen University (approval number: IACUC 99-16; approval date: September 9, 2010).

After being fed a HFD for two weeks, rats were dosed by oral gavage once per day for eight weeks with kaempferol (purity ≥ 97.0%; Sigma-Aldrich) doses of 75, 150, and 300 mg/kg in a volume of 1.5 mL/kg distilled water. Another group of HFD-fed rats was treated orally for eight weeks with 100 mg/kg/day fenofibrate (purity ≥ 99.0%; Sigma-Aldrich). The dose of fenofibrate was based on studies with long-term fenofibrate treatment in rats [9]. A vehicle-control group of HFD-fed and RCD-fed rats was treated with 1.5 mL/kg distilled water only over the same period. Samples were centrifuged at 2000 × g for 10 minutes at 4°C. The plasma was then removed and placed into aliquots for the respective analytical determinations. After blood was collected, the liver and visceral and subcutaneous white adipose tissues (WAT) were removed, rinsed with physiological saline, weighed, and immediately stored at ~70 °C.

Biochemical parameter analysis
Diagnostic kits for the measurement of plasma glucose (Cat. No. 10009582), total cholesterol (TC; Cat. No. 10007640), and triglycerides (TG; Cat. No. 10010303) were purchased from Cayman Chemical Company. The diagnostic kit to determine plasma and hepatic levels of high-density lipoprotein cholesterol (HDL-C) was purchased from Bio-Quant Diagnostics (Cat. No. BQ 019CR); and low-density lipoprotein cholesterol (LDL-C) levels were calculated using Friedewald’s equation [10]. Plasma free fatty acid (FFA) levels were determined using an FFA-quantification kit obtained from Abcam plc (Cat. No. ab65341). All samples were analyzed in triplicate.

Determination of AI and CRI
Atherogenic index (AI) and coronary risk index (CRI) were calculated as LDL-C/HDL-C and TC/HDL-C, respectively [11, 12].

Extraction of hepatic lipids
A section of each liver was collected for lipid content analysis. The liver (1.25 g) was homogenized with chloroform/methanol (1:2, 3.75 mL), and then chloroform (1.25 mL) and distilled water (1.25 mL) were added to the homogenate and mixed well. After centrifugation (1500 × g for 10 min), the lower clear organic phase solution was transferred into a new glass tube and then lyophilized. The lyophilized powders were dissolved in chloroform/methanol (1:2) as the hepatic lipid extracts and stored at ~20 °C for fewer than three days [13].

Hepatic pathological evaluation
Small pieces of hepatic tissues taken from experimental animals were fixed in 10% neutral formalin, dehydrated with alcohol, embedded in paraffin, and sectioned to a mean thickness of 4 µm. Hematoxylin and eosin- (H&E) stained tissues were examined histologically to evaluate the index of diabetic-induced necrosis. Liver biopsy was scored according to the following criteria: grade 0, no steatosis, normal liver; grade 1, < 25% of hepatocytes affected; grade 2, 26–50% of hepatocytes affected; grade 3, 51–75% of hepatocytes affected; and grade 4, > 75% of hepatocytes affected [14].

Adipocyte pathological evaluation
Histological photomicrographs of adipose tissue were analyzed with a light microscope using the paraffin method. Fresh tissues were fixed immediately in Bouin’s solution for 6 to 12 hours, and then fixed tissues were washed under running water. After being dehydrated through different grades of alcohol, the tissues were embedded in paraffin block at 60 °C. Sections (8 µm) were cut and mounted on glass slides coated with an egg albumin, and the paraffin was removed using xylene and alcohol. The tissues were stained with H&E. After being dehydrated and cleared of alcohol and xylene, the glass slides were mounted in Canada balsam. Photomicrographs were taken with a Zeiss Axioslab light microscope equipped with a Nikon Microflex HFX microscope camera. The sizes of epididymal adipocytes were calculated using Image-Pro Plus 7.0 (Media Cybernetics).
Preparation of hepatic fractions
Hepatic fractions were prepared as described previously [15]. To prepare nuclear fractions, hepatic tissue was homogenized with ice-cold lysis buffer containing 5 mmol/L Tris-HCl (pH 7.5), 2 mmol/L MgCl₂, 15 mmol/L CaCl₂, 1.5 mol/L sucrose, 0.1 mol/L dithiothreitol (DTT), and protease inhibitor cocktail. After centrifugation (10500 × g for 20 minutes at 4°C), the pellet was suspended in extraction buffer containing 20 mmol/L L2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (pH 7.9), 1.5 mmol/L MgCl₂, 0.42 mol/L NaCl, 0.2 mmol/L EDTA, and 25% (v/v) glycerol, 0.1 mol/L DTT, and protease inhibitor cocktail. The mixture was placed on ice for 30 minutes. The nuclear fraction was prepared by centrifugation at 20500 × g for 5 minutes at 4°C. The post-nuclear fraction was extracted from the liver of each rat as described below. In brief, hepatic tissue was homogenized with ice-cold lysis buffer (pH 7.4) containing 137 mmol/L NaCl, 20 mmol/L Tris-HCl, 1% Tween 20, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor cocktail solution in DMSO. The homogenate was then centrifuged at 20500 × g for 20 minutes at 4°C. The protein concentration of each fraction was determined using a commercial kit (Bio-Rad Laboratories). Western blot analyses
For the determination of peroxisome proliferators activated receptor (PPAR), sterol regulatory element binding protein (SREBP)-1, and SREBP-2, 30 mg protein of each nuclear fraction was resolved using 8% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were transferred electrophoretically to a nitrocellulose membrane, blocked with 5% (w/v) skim milk solution for 1 hour, and then incubated with primary antibodies to PPARα (Santa Cruz Biotechnology, Inc.; Cat. No. sc-98499), SREBP-1 (Santa Cruz Biotechnology, Inc.; Cat. No. sc-367), SREBP-2 (Santa Cruz Biotechnology, Inc.; Cat. No. sc-5603), or β-actin (Santa Cruz Biotechnology, Inc.; Cat. No. sc-130656) overnight at 4°C. After the blots were washed, they were incubated with goat anti-rabbit and/or goat anti-mouse IgG HRP-conjugated secondary antibody for 1.5 hours at room temperature. The blots were stripped with Restore Western Blot Stripping Buffer (CANDOR Bioscience GmbH) for 15 minutes and incubated with the antibodies. In addition, 30 mg protein from each post-nuclear fraction for acyl-CoA oxidase (ACO; Santa Cruz Biotechnology, Inc.; Cat. No. sc-98499) and cytochrome P450 isoform 4A1 (CYP4A1; Santa Cruz Biotechnology, Inc.; Cat. No. sc-53248) was subjected to 10% SDS-PAGE. Each antigen-antibody complex was visualized using ECL Western blotting detection reagents and detected by chemiluminescence with LAS-1000 plus (Fujiﬁlm). Band densities were determined using ATTO Densitograph Software (ATTO Corporation) and quantiﬁed as the ratio to β-actin. The mean value for samples from the vehicle-treated RCD-fed group on each immunoblot, expressed in densitometry units, was adjusted to a value of 1.0. All experimental sample values were then expressed relative to this adjusted mean value.

Statistical Analysis
Data are expressed as the mean ± standard deviation (SD) for each group of animals at the number indicated in tables. Statistical analysis was performed with one-way analysis of variance (ANOVA). The Dunnett range post hoc comparisons were used to determine the source of signiﬁcant differences where appropriate. A p value < 0.05 was considered statistically significant.

Results
The BWs of HFD-fed rats in the drug-treated and vehicle-treated groups were monitored over the eight-week treatment period (Table 1). At the end of treatment, the BW of kaempferol-treated rats was signiﬁcantly lower than that of rats in the vehicle-treated group. Kaempferol signiﬁcantly suppressed BW gain at both the moderate (150 mg/kg/day) and high doses (300 mg/kg/day). Similar results were seen in rats treated with fenofibrate (100 mg/kg/day; Table 1). No signiﬁcant differences in daily food intake were observed among the groups over the experimental period, despite the slightly higher water intake observed in the vehicle-treated HFD-fed group as compared to the others (Table 1).

The weight of fat pads from HFD-fed rats in the drug-treated and vehicle-treated groups were assessed after the treatment period (Table 1). Epididymal WAT, perirenal WAT, mesenteric WAT, and inguinal WAT weights were lower in kaempferol-treated rats than in their vehicle-treated counterparts. A signiﬁcant reduction in fat pad weight was seen with both the moderate (150 mg/kg/day) and high doses (300 mg/kg/day) of kaempferol (p < 0.05). Similarly, after treatment with fenofibrate, epididymal,
Changes in the plasma lipids, hepatic lipids, atherogenic index (AI), and coronary artery index (CRI) in HFD-fed rats receiving an 8-week treatment with kaempferol or fenofibrate.

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>RCD-fed Vehicle</th>
<th>HFD-fed Vehicle</th>
<th>Kaempferol (mg/kg/day)</th>
<th>Fenofibrate (100 mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Plasma TC (mg/dL)</td>
<td>72.9 ± 5.8 a</td>
<td>130.2 ± 12.3 b</td>
<td>116.7 ± 10.3 b</td>
<td>99.6 ± 8.3 c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75.0 ± 2.8 e</td>
<td>80.3 ± 8.0 f</td>
</tr>
<tr>
<td></td>
<td>56.8 ± 6.6 a</td>
<td>124.5 ± 6.3 d</td>
<td>110.9 ± 6.3 e</td>
<td>95.0 ± 5.2 f</td>
</tr>
<tr>
<td></td>
<td>31.8 ± 3.2 e</td>
<td>100.2 ± 4.2 b</td>
<td>82.5 ± 5.7 e</td>
<td>64.3 ± 5.1 f</td>
</tr>
<tr>
<td></td>
<td>46.9 ± 3.4 f</td>
<td>27.8 ± 3.8 h</td>
<td>32.1 ± 4.2 b</td>
<td>39.1 ± 2.9 f</td>
</tr>
<tr>
<td></td>
<td>28.2 ± 2.8 g</td>
<td>61.9 ± 5.3 i</td>
<td>55.3 ± 4.6 f</td>
<td>47.1 ± 3.8 f</td>
</tr>
<tr>
<td></td>
<td>0.7 ± 0.1 f</td>
<td>2.6 ± 0.2 h</td>
<td>1.6 ± 0.2 f</td>
<td>1.1 ± 0.1 f d</td>
</tr>
<tr>
<td></td>
<td>1.6 ± 0.3 f</td>
<td>3.6 ± 0.5 j</td>
<td>2.5 ± 0.3 f</td>
<td>2.0 ± 0.2 f</td>
</tr>
<tr>
<td></td>
<td>18.3 ± 2.7 k</td>
<td>33.9 ± 2.5 l</td>
<td>31.7 ± 2.6 m</td>
<td>26.9 ± 2.5 n</td>
</tr>
<tr>
<td></td>
<td>12.4 ± 2.2 m</td>
<td>24.3 ± 1.9 n</td>
<td>20.8 ± 2.1 o</td>
<td>17.6 ± 1.5 p</td>
</tr>
</tbody>
</table>

Kaempferol or fenofibrate was dissolved in distilled water for oral administration at the desired doses in a volume of 10 ml/kg once a day into HFD-fed rats. The vehicle (distilled water) used to dissolve the tested medications was given at the same volume. Values (mean ± SD) were obtained from a group of 8 animals in each group after 8 weeks of the experimental period; *p < 0.05 and **p < 0.01 compared to the values of vehicle-treated RCD-fed rats in each group, respectively.

Fig. 1 Histological photographs of livers from rats treated with kaempferol, fenofibrate, or vehicle for 8 weeks. Vehicle-treated rats were given the same volume of vehicle (distilled water) used to dissolve the test medications. Photomicrographs are of tissues isolated from vehicle-treated RCD-fed rats (A), vehicle-treated HFD-fed rats (B), kaempferol (300 mg/kg/day)-treated HFD-fed rats (C), or fenofibrate (100 mg/kg/day)-treated HFD-fed rats (D). Photomicrographs were taken at a magnification of × 400.

perirenal mesenteric, and inguinal fat pads were 27%, 32%, 31%, and 33% lower, respectively, than in their vehicle-treated counterparts.

The HFD caused elevated concentrations of plasma TC, TG, and LDL-C. The moderate (150 mg/kg/day) and high doses (300 mg/kg/day) of kaempferol significantly reduced plasma total TC levels (23.8% and 31.6% reduction, respectively) compared with vehicle-treated, HFD-fed rats (Table 2). All doses of kaempferol decreased plasma TG levels in HFD-fed rats (Table 2). The low (75 mg/kg/day), moderate, and high doses of kaempferol significantly reduced plasma LDL-C levels (17.6%, 35.8%, and 51.9% reductions, respectively) (Table 2). Plasma TC, TG, and LDL-C concentrations were reduced significantly by 38.2%, 49.7%, and 60.1%, respectively, in fenofibrate-treated, HFD-fed rats compared with vehicle-treated, HFD-fed rats (Table 2).

The plasma concentration of HDL-C in HFD-fed rats was reduced to 59.2% of the level in the RCD-fed group (Table 2). After 8 weeks of treatment with kaempferol (300 mg/kg/day) or fenofibrate, the plasma HDL-C concentration in HFD-fed rats was elevated to nearly that of the RCD-fed rats. Plasma FFAs were significantly higher in vehicle-treated, HFD-fed rats compared to RCD-fed rats (Table 2). The plasma FFA level was reduced by 36.2% in HFD-fed rats treated with 300 mg/kg/day kaempferol, compared with their vehicle-treated counterparts (Table 2). Fenofibrate treatment reduced FFA concentrations in HFD-fed rats by 46.3% relative to the level in vehicle-treated, HFD-fed rats (Table 2). Fenofibrate treatment arrested the elevation of AI and CRI LPL in HFD-fed rats (Table 2). Kaempferol treatment also caused a significant (p < 0.05) and dose-related reduction in the atherogenic and coronary artery risk indices in the HFD-fed rats when compared to the values recorded for their vehicle-treated counterparts (Table 2).
The hepatic TC level was significantly higher in HFD-fed rats than in rats from the RCD-fed group. TC levels were reduced by 25.6% in HFD-fed rats treated with 300 mg/kg/day kaempferol (Table 2). Similarly, kaempferol treatment (300 mg/kg/day) also produced a significant reduction in hepatic TG concentration, to 64.7% of that in vehicle-treated, HFD-fed rats (Table 2). Hepatic TC and TG levels were significantly reduced (by 38.1% and 47.4%, respectively) in fenofibrate-treated rats compared with vehicle-treated, HFD-fed rats (Table 2).

HFD-fed rats showed significantly greater hepatic lipid accumulation than RCD-fed animals (Fig. 1A and 1B). The extent of hepatic lipid accumulation after 8 weeks in fenofibrate-treated, HFD-fed rats was similar to that in RCD-fed rats (Fig. 1A and 1C). HFD-fed rats treated with 300 mg/kg/day kaempferol showed considerably lower hepatic lipid accumulation than their vehicle-treated counterparts (Fig. 1B and 1D). The pathological grading of hepatic steatosis in each group is indicated in Table 3. The histological appearance of the epididymal adipocytes was irregular in HFD-fed rats compared to the RCD-fed group; this morphological change did not appear in HFD-fed groups after 8 weeks of fenofibrate (100 mg/kg/day) treatment (Fig. 2A, 2B and 2C). The histological appearance of the epididymal adipocytes was more regular in HFD-fed rats treated with kaempferol (300 mg/kg/day) for 8 weeks (Fig. 2D). In addition, the sizes of epididymal adipocytes were significantly bigger in the HFD-fed group compared to the RCD-fed group (Fig. 2A and 2B). After 8 weeks of treatment, the average size of the epididymal adipocytes was lower by approximately 26.5% and 37.3%, respectively in kaempferol (300 mg/kg/day) or fenofibrate (100 mg/kg/day)-treated HFD-fed rats as compared with the vehicle-treated counterparts (Fig. 2C and 2D; Table 3).

The histological appearance of the epididymal adipocytes was irregular in HFD-fed rats compared with animals in the RCD-fed group. This morphological change was not evident in HFD-fed rats after fenofibrate treatment (Fig. 2A, 2B, and 2C). The histological appearance of the epididymal adipocytes in HFD-fed rats treated with 300 mg/kg/day kaempferol was not as normal as in fenofibrate-treated rats, but was better than in vehicle-treated controls (Fig. 2D). Epididymal adipocytes were also significantly larger in HFD-fed compared to RCD-fed rats (Fig. 2A and 2B). The average size of the epididymal adipocytes was reduced by approximately 26.5% and 37.3%, respectively, in HFD-fed rats treated with kaempferol (300 mg/kg/day) or fenofibrate compared with their vehicle-treated counterparts (Fig. 2C and 2D; Table 3).

Hepatic PPARα protein expression in HFD-fed rats was lower than that in RCD-fed animals, but was elevated significantly by treatment with kaempferol (300 mg/kg/day) (Fig. 3). In addition, the hepatic expression levels of ACO and CYP4A proteins in HFD-fed rats were markedly lower than in RCD-fed rats but were significantly elevated in kaempferol-treated (300 mg/kg/day) HFD-fed rats (Fig. 3). Similar results were seen in rats treated with fenofibrate (Table 3).

Table 3 Results of histopathological findings in livers and epididymal adipocytes of HFD-fed rats receiving an 8-week treatment with kaempferol or fenofibrate.

<table>
<thead>
<tr>
<th>Findings</th>
<th>RCD-fed Vehicle</th>
<th>HFD-fed Vehicle</th>
<th>Kaempferol (300 mg/kg/day)</th>
<th>Fenofibrate (100 mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic steatosis (0–4)</td>
<td>0</td>
<td>1.8 ± 0.6</td>
<td>1.2 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>Average sizes of epididymal adipocytes (µm)</td>
<td>30.1 ± 8.2</td>
<td>51.2 ± 7.1</td>
<td>37.6 ± 6.2</td>
<td></td>
</tr>
</tbody>
</table>

Kaempferol or fenofibrate was dissolved in distilled water for oral administration at the desired doses in a volume of 10 ml/kg once a day into HFD-fed rats. The vehicle (distilled water) used to dissolve the tested medications was given at the same volume. Values (mean ± SD) were obtained from each group of 8 animals in each group after 8 weeks of the experimental period. *p < 0.05 compared to the values of vehicle-treated RCD-fed rats in each group, respectively. **p < 0.05 compared to the values of vehicle-treated HFD-fed rats in each group, respectively.
The expression levels of hepatic SREBP-1 and SREBP-2 proteins in HFD-fed rats were significantly higher in RCD-fed rats. The levels were decreased by 53.7% and 49.3% in HFD-fed rats treated with kaempferol (300 mg/kg/day), relative to those in vehicle-treated, HFD-fed rats (Fig. 3). Hepatic SREBP-1 and SREBP-2 protein expression levels in HFD-fed rats treated with fenofibrate were 50.2% and 42.2%, respectively, lower than those in their vehicle-treated counterparts (Fig. 3).

Discussion

In this study, BW loss in HFD-fed rats was accompanied by a depletion of body fat stores, since treatment with kaempferol also significantly reduced the weight of the visceral and subcutaneous WAT compared with that of vehicle-treated HFD-fed rats. This strongly suggests that kaempferol has therapeutic potential for the management of obesity and hyperlipidemia, and for the prevention of atherogenic cardiovascular diseases.

It has been reported that kaempferol is a weak partial agonist of PPARα with increasing insulin sensitivity [22]. Due to the ability of kaempferol to reduce serum levels of TGs and total cholesterol, as well as adipose tissue mass and BW gain functions similar to those of PPARα activation, we hypothesized that the actions of kaempferol are related to the regulation of hepatic expression of PPARα-target genes involved in lipid metabolism. In hepatocytes and other tissues (e.g., heart), ligand- (natural long chain fatty acids) activated PPARα binds to peroxisome proliferator response elements of DNA and increases the transcription of genes encoding enzymes involved in fatty acid oxidation and lipoprotein metabolism [23, 24]. The outcome is an increase in hepatic fatty acid oxidation and ketogenesis, decreased lipid levels in tissues, and protection against lipotoxicity. We found that kaempferol-treated HFD-fed rats had significantly higher hepatic PPARα protein, and that the effect of kaempferol was equivalent to that of fenofibrate. It appears that kaempferol regulates the lipid profile in HFD-fed rats through an increase in hepatic PPARα levels. The discovery of kaempferol as a PPARα activator may offer the promise of a novel class of anti-diabetic drug. A metabolism coefficient of 6.25 was employed to convert the effective daily oral dosage of kaempferol for rats (300 mg/kg) into people; assuming that the average body weight of an adult is 60 kg [25], the recommended daily oral dosage of kaempferol applied in humans is nearly 2.8 g. Although reductions in lipogenic activity and in dietary lipid absorption have been suggested as causes of the reduced liver lipid content, an increased capacity of peroxisomal β-oxidation (ACO) and microsomal ω-oxidation (CYP4A) of fatty acids could also be contributing factors [26]. Elevated hepatic levels of ACO and CYP4A proteins imply an enhanced oxidation of fatty acids in the peroxisomes and microsomes of kaempferol-treated, HFD-fed rats. These results support the contention that kaempferol, by di-

Original Papers

Table 4

<table>
<thead>
<tr>
<th>Relative units</th>
<th>RCD-fed</th>
<th>HFD-fed</th>
<th>Kaempferol (300 mg/kg/day)</th>
<th>Fenofibrate (100 mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα/β-actin</td>
<td>1.00 ± 0.05 a 0.58 ± 0.08b 0.78 ± 0.05 ab 0.85 ± 0.06 b</td>
<td>1.01 ± 0.04 a 0.45 ± 0.06b 0.76 ± 0.06 ab 1.13 ± 0.04 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACO/β-actin</td>
<td>1.00 ± 0.05 ab 0.43 ± 0.07 a 0.81 ± 0.09 a 1.09 ± 0.05 b</td>
<td>1.00 ± 0.05 ab 0.43 ± 0.07 a 0.81 ± 0.09 a 1.09 ± 0.05 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP4A/β-actin</td>
<td>1.02 ± 0.06 a 2.92 ± 0.08 a 1.35 ± 0.06 b 1.46 ± 0.09 b</td>
<td>1.01 ± 0.07 a 3.08 ± 0.09 a 1.56 ± 0.03 b 1.78 ± 0.08 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SREBP-1/β-actin</td>
<td>1.01 ± 0.07 b 3.08 ± 0.09 a 1.56 ± 0.07 a 1.78 ± 0.08 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SREBP-2/β-actin</td>
<td>1.02 ± 0.06 a 2.92 ± 0.08 a 1.35 ± 0.06 b 1.46 ± 0.09 b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kaempferol or fenofibrate was dissolved in distilled water for oral administration at the desired doses in a volume of 10 mL/kg once a day into HFD-fed rats. The vehicle (distilled water) used to dissolve the tested medications was given at the same volume. Values (mean ± SD) were obtained from a group of 8 animals in each group after 8 weeks of experimental period; *p < 0.05 compared to the values of vehicle-treated RCD-fed rats in each group, respectively; **p < 0.05 compared to the values of vehicle-treated HFD-fed rats in each group, respectively.
rectly or indirectly activating PPARα, can upregulate the expression of genes downstream of PPARα, which may lead to enhanced hepatic fatty acid oxidation and reduced TG content. The sterol regulatory element binding proteins (SREBPs) are a family of three basic helix-loop-helix leucine zipper transcription factors (SREBP-1a, -1c, and -2) that have been identified as transacting factors involved in the maintenance of intracellular cholesterol homeostasis, the control of fatty acid metabolism, and the differentiation of adipocytes [27]. The SREBP-2 isoform activates genes of the cholesterogenic pathway, whereas the SREBP-1 isoforms are more active in regulating the synthesis of fatty acids [28]. It has been documented that SREBPs were the upregulated genes related to fatty acid synthase and cholesterol levels [29]. In the current study, the elevated expressions of SREBP-1 and SREBP-2 in HFD-fed rats were significantly decreased by the kaempferol (300 mg/kg/day) treatment. These results suggest that kaempferol has an ameliorating effect on dyslipidemia through the impaired hepatic SREBPs as well.

In conclusion, the results of this study show that kaempferol suppresses BW gain and body fat accumulation by increasing fatty acid oxidation, an effect which is likely mediated via up-regulation of PPARα and down-regulation of SREBP expression in the liver of HFD-fed rats. We suggest that supplemental treatment with kaempferol may prevent or improve obesity by modulating lipid metabolism and preventing metabolic syndrome, a representative, lifestyle-related cluster of diseases caused by an excessively HFD.

Acknowledgements

The present study was supported by a grant (CCMP99-RD-022) from the Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taiwan.

Conflict of Interest

No competing financial interests exist.

References

5 Prince PS, Suthya B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiac toxic male Wistar rats. Eur J Pharmacol 2010; 635: 142–148
17 Björntorp P. Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism 1971; 20: 703–713
23 Fang XY, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 2008; 82: 615–622